	MSTITUTE OF
1	00 ax 1
(
3	BANGALONE T
	MUNEO

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 1 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

File No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

COURSE PLAN

Academic Year 2019 – 20

Program:	B E
Semester:	2
Course Code:	18ME25
Course Title:	Elements of Mechanical Engineering
Credit / L-T-P:	3/2-1-0
Total Contact Hours:	40
Course Plan Author:	APPESE S D

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O.,
Bengaluru – 560090, Karnataka, INDIA
Phone / Fax :+91 80 23721477 -STD- 080-23721477
Web: http://www.skit.org.in/,

e-mail: skit1princi@gmail.com / principal@skit.org.in

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 2 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

Table of Contents

18ME25: ELEMENTS OF MECHANICAL ENGINEERING	3
A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	5
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
3. Articulation Matrix	6
4. Mapping Justification	
5. Curricular Gap and Content	9
C. COURSE ASSESSMENT	9
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	9
D1. TEACHING PLAN – 1	
Module – 1	9
Module – 2	10
E1. CIA EXAM – 1	
a. Model Question Paper – 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	12
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	19
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	25
Table 2: Concept to Outcome – Example	25

Note: Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 3 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

18ME25: ELEMENTS OF MECHANICAL ENGINEERING A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester :	I year / II sem	Academic Year:	2019-20
Course Title:	ELEMENTS OF MECHANICAL ENGINEERING	Course Code:	18ME25
Credit / L-T-P:	3/2-1-0	SEE Duration:	3 Hours
Total Contact Hours:	40	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	APPESE S D	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target: %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

in G.	,			
Modu	Module Content	Teaching	Module	Blooms
le		Hours	Concepts	Level
1	Introduction and application of energy sources Fossil fuels, hydel, solar, wind, nuclear fuels and bio-fuels Environmental issues like global warming and ozone depletion. Introduction, states, concept of work, heat, temperature; Zeroth, 1st, 2nd and 3rd laws of thermodynamics Concept of internal energy, enthalpy and entropy (simple numerical). Formation of steam and thermodynamic properties of steam Properties of steam (simple numericals).	08	Energy sources, Thermodynamic properties	L3
2	Introduction to boilers, classification, Boilers: Introduction to boilers, classification, Introduction to boiler mountings and accessories (no sketches) Hydraulic Turbines – Classification specification, Principles and		Steam	
	operation of Pelton wheel turbine, Francis turbine and Kaplan turbine classification and specification of pumps, Reciprocating pump and centrifugal pump, Concept of cavitation and priming.		generation, Energy conversion	L2
3	Classification, I.C. Engines parts,2 and 4 stroke petrol and 4-stroke diesel engines. P-V diagrams of Otto and Diesel cycles. Simple problems on indicated power, brake power, indicated thermal efficiency, brake thermal efficiency, mechanical efficiency and specific fuel consumption. Definitions – Refrigerating effect, Ton of Refrigeration, Ice making capacity, COP, relative COP, Unit of Refrigeration Refrigerants, Properties of refrigerants, List of commonly used refrigerants. Principle and working of vapor compression refrigeration and vapor absorption refrigeration. Domestic refrigerator. Principles and applications of air conditioners, window and split air conditioners	08	Combustion, refrigeration	L2
4	Metals — Ferrous: cast iron, tool steels and stainless steels and nonferrous: aluminum, brass, bronze. Polymers — Thermoplastics and thermosetting polymers. Ceramics -Glass, optical fiber glass, cermets. Composites — Fiber reinforced composites, Metal Matrix Composites Smart materials — Piezoelectric materials, shape memory alloys, semiconductors and insulators. Definitions. Classification and methods of soldering, brazing and welding. Brief description of arc welding, oxyacetylene welding, TIG welding,			

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 4 / 26

Copyrigl	nt ©2017. cAAS. All rights reserved. COURSE PLAN - CAY 2018-19	BE-2-ME-SKIT	-Ph5b1-F02-V2.2	
	and MIG welding.			
	Open & crossed belt drives, Definitions -slip, creep, velocity ratio,			
	derivations for length of belt in open and crossed belt drive, Ratio of			
	tension in flat belt drives, advantages and			
	disadvantages of V belts and timing belts, simple numerical problems.		Engineering	
	Types-spur, helical, bevel, worm and rack and pinion. Velocity ratio,	08	materials, power	L3
	Advantages and disadvantages over belt drives, simple numerical		transmission	
	problems on velocity ratio.			
	Principle of working of a center lathe. Parts of a lathe. Operations on			
	lathe -Turning, Facing, Knurling, Thread Cutting, Drilling, Taper turning			
	by Tail stock offset method and Compound slide swiveling method,			
	Specification of Lathe.			
	Principle of milling, types of milling machines. Working of horizontal			
	and vertical milling machines. Milling processes – plane milling, end			
5	milling, slot milling, angular milling, form milling, straddle milling, and		3.6. 1.1.1	
	gang milling.		Machining	
	Introduction, components of CNC, open loop and closed loop systems,		process,	
	Advantages of CNC, CNC Machining centers and Turning centers.	08	Automation	T 0
	Robot anatomy, joints and links, common robot configurations.			L2
	Applications of Robots in material handling, processing and assembly			
	and inspection			

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video; one per concept; to understand the concepts; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used; Free / open source
- 3. Research: Recent developments on the concepts publications in journals; conferences etc.

J. Itc	scarch. Recent developments on the concepts – publications in Journals, conferences etc.	
Modu	Details	Available
le		
A	Text books (Title, Authors, Edition, Publisher, Year.)	
	Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, Bangalore, 2008.	In Lib, In dept
	Elements of Mechanical Engineering, Vol1 & 2, Hajra Choudhury, Media Promoters, New Delhi, 2001.	In Lib, In dept
	A Text Book of Elements of Mechanical Engineering", S. Trymbaka Murthy, 3 rd revised edition 2006, I. K. International Publishing House Pvt. Ltd., New Delhi.	In Lib, In dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	
	Elements of Mechanical Engineering, R.K. Rajput, Firewall Media, 2005.	In Lib, In dept
	Elements of Mechanical Engineering, Dr. A. S. Ravindra, Best Publications, 7th edition, 2009.	In Lib, In dept
	CAD/CAM/CIM, Dr. P Radhakrishnan, 3 rd edition, New Age International Publishers, New Delhi.	In Lib, In dept
	Introduction to Robotics: Mechanics And Control, Craig, J. J., 2nd Ed. Addison-Wesley Publishing Company, Readong, MA, 1989.	In Lib, In dept
	Introduction to Engineering Materials", B.K. Agrawal, Tata McGraHill Publication, New Delhi.	In Lib, In dept
	Thermal Science and Engineering", Dr. D.S. Kumar, S.K. Kataria & sons Publication, New Delhi	In Lib, In dept
C	Concept Videos or Simulation for Understanding	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content .

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms	
	Code					Level	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 5 / 26

PUC

Basic

Copyright ©2017. cAAS. All rights reserved. COURSE PLAN - CAY 2018-19 BE-2-ME-SKIT-Ph5b1-F02-V2.2

Force, energy wave, heat engine Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modu	Topic / Description	Area	Remarks	Blooms
les				Level
1	Basic engineering physics	Higher Study	Gap A seminar on Thermodynamic	Understand
		_		L2

B. OBE PARAMETERS

Physics

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Write 1 CO per Concept.								
Module	#	Cos	Teach.	Concept	Instr	Assessment	Blooms'	
			Hours		Method	Method	Level	
1	CO-1	students will be able to Identify	04	Energy	Chalk &	Assignment		
		different sources of energy and their		sources	board,	CIA	L2	
		conversion process.			PPT's	SEE	Understand	
1	CO-2	students will be able to understand	04	Thermodyna	Chalk &	Assignment		
		thermodynamic properties		mic	board,	CIA	L3	
				properties	PPT's	SEE	Application	
2	CO-3	students will be able to understand	04	Steam	Chalk &	Assignment		
		boiler mountings and accessories		generation	board,	CIA	L2	
					PPT's	SEE	Understand	
2	CO-4	students will be able to Explain the	04	Energy	Chalk &	Assignment		
		working principle of hydraulic		conversion	board,	CIA	L2	
		turbines, pumps			PPT's	SEE	Understand	
3	CO-5	students will be able to Explain the	04	Combustion	Chalk &	Assignment		
		working principle of IC engines			board,	CIA	L2	
					PPT's	SEE	Understand	
3	CO-6	students will be able to Explain the	04	Refrigeration	Chalk &	Assignment		
		working principle of refrigeration.			board,	CIA	L2	
					PPT's	SEE	Understand	
4	CO-7	students will be able to Understand the	04	Mechanical	Chalk &	Assignment		
		properties of common engineering		properties	board,	CIA	L2	
		materials and their applications in		1 1	PPT's	SEE	Understand	
		engineering industry.						
4	CO-8	students will be able to Recognize	04	Power	Chalk &	Assignment		
		various power transmission elements.		transmission	board,	CIA	L3	
		•			PPT's	SEE	Application	
5	CO-9	students will be able to Discuss the	04	Machining	Chalk &	Assignment	~ *	
		working of conventional machine		process	board,	ČIA	L2	
		tools, machining processes, tools and		1	PPT's	SEE	Understand	
		accessories.						
5	CO-10	students will be able to Describe the	04	Advance	Chalk &	Assignment		
		advanced manufacturing systems.		manufacturin		CIA	L2	
				1				

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 6 / 26

Copyright ©2017. cAAS. All rights reserved.		hts reserved.	COURSE PLAN - CA	COURSE PLAN - CAY 2018-19		BE-2-ME-SKIT-Ph5b1-F02-V2.2				
						g systems	PPT's	SEE	Understand	
		-		Total	40	-	-	-	-	

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Power generation in Solar, wind, hydro, nuclear, thermal power plants	CO1	L2
2	Design of Heat transfer equipment's	CO2	L3
3	Thermal power plants, food processing industry, sugar plants, Textiles	CO3	L2
4	Hydro power plants	CO4	L2
5	Running of automobile vehicles	CO5	L2
6	Fridges for domestic and household purposes, air-conditioners for rooms	CO6	L2
7	Design and fabrication of various machine components	CO7	L2
8	Power transmission in vehicles, power transmission between machine components	CO8	L3
9	Used in manufacturing cylindrical jobs, flat surfaces of machine components	CO9	L2
10	Automation in industries	CO10	L2

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

_	Course Outcomes	Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1												
#	COs	PO ₁	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1		Level
											0	1	2	
18ME25.1	students will be able to Identify different sources of energy and their conversion process.		-	-	-	-	-	-	-	-	-	-	-	L2
18ME25.2	students will be able to understand thermodynamic properties	√	√	-	-	-	1	-	-	-	-	-	-	L2
18ME25.3	students will be able to understand boiler mountings and accessories	! √	-	-	-	-	-	-	-	-	-	-	-	L2
	students will be able to Explain the working principle of hydraulic turbines, pumps	. 1	-	-	-	-	-	-	-	-	-	-	-	L2
18ME25.5	students will be able to Explain the working principle of IC engines	<i>√</i>	√	-	-	-	1	-	-	-	-	-	-	L2
18ME25.6	students will be able to Explain the working principle of refrigeration.	√	-	-	-	-	-	-	-	-	-	-	-	L2
18ME25.7	students will be able to Understand the properties of common engineering materials and their applications in engineering industry.	√	-	-	-	-	-	-	-	-	-	-	-	L2
18ME25.8	students will be able to Recognize various power transmission elements.	√	V	1	-	-	-	-	-	-	-	-	-	L2
18ME25.9	students will be able to Discuss the working of conventional machine tools, machining processes, tools and accessories.		V	√	-	-	-	-	-	-	-	-	-	L2
18ME25.10	students will be able to Describe the advanced manufacturing systems.	√	√	V	-	-	1	-	-	-	-	-	-	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 7 / 26

Copyright ©2017. cAAS. All rights reserved.

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

CS501PC Average attainment (1, 2, or 3)

PO, PSO

I.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design

4. Mapping Justification

Mapping		Justification	Mapping Level
CO	PO		•
CO1		'Engineering Knowledge:' - Acquisition of Engineering Knowledge of Energy resources is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	L2

Mapping		Justification	Mapping
			Level
CO	PO		-
CO2	1	Acquisition of Engineering Knowledge of thermodynamic properties is essential to accomplish solutions to complex engineering problems in	L2
CO2	2	Mechanical Engineering. Analyzing problems require knowledge / understanding of different	1.2
		temperature conditions in bodies to accomplish solutions to complex engineering problems in Electronics engineering.	

Map	ping	Justification	Mapping Level
CO	PO		-
CO3	1	Acquisition of Engineering Knowledge of turbines and boilers is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	L2

Map	ping	Justification	Mapping Level
CO	PO		-
CO4	1	Acquisition of Engineering Knowledge of hydraulic pumps is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	L2

Mapping		Justification			
CO	PO		-		
CO5	1	Engineering Knowledge: '- Acquisition of Engineering Knowledge of engines is required t0 know the performance parameters to accomplish solutions to complex engineering problems in Mechanical Engineering.	L2		
CO5	2	Engineering Knowledge is require to know the knowledge of efficiency of engine	L2		

Mapping		Justification	Mapping Level
СО	PO		-
CO6	1	Knowledge of refrigeration is required to understand the working principals of refrigeration and air conditioning	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 8 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

Mapping		Justification	Mapping Level
CO	PO		-
CO7	1	Knowledge of Engineering science is required to understand the material	L2
		properties	

Mapping		Justification			
CO	PO		-		
CO8	1	Knowledge of basic power transmission is required	L2		
CO8	2	Solving problems based on speed of the belt drives and tensions of belt drives	L2		
CO8	3	Design and development of different belt drives	L2		

Mapping		Justification	
CO	PO		-
CO9	1	Knowledge of basic engineering tools is required	L2
CO9	2	Solving problems based on cutting speed	L2
CO9	3	Development of different work pieces with different cutting operations	L2

Mapping		Justification		
CO	PO		-	
CO10	1	Knowledge of basic engineering tools is required	L2	
CO10	2	Solving problems based on cutting speed	L2	
CO10	3	Development of different work pieces with different cutting operations	L2	

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Automotive Sensors	Seminar	2 nd week	Self	

Note: Write Gap topics from A.4 and add others also.

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Assig	innent per enapter per student. I seminar	per test per	student	•						
Mod	Title	Teaching	No. of question in Exam					CO	Levels	
ule#		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Sources of Energy, Basic concepts	08	2	-	-	1	1	2	CO1,	L2
	of Thermodynamics, Steam								CO2	
2	Boilers, Turbines, Hydraulic	08	2	-	-	1	1	2	CO3,	L2
	pumps								CO4	
3	Internal Combustion Engines,	08	-	2	-	1	1	2	CO5,	L3
	Refrigeration and Air								CO6	
	conditioning									
	Properties, Composition and		-	2	-	1	1	2	CO7,	L2

ME-18ME25 Prepared by Page # 8 / 26 Checked by Copyright ©2017. cAAS. All rights Approved by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 9 / 26

Copyright ©2017. cAAS. All rights reserved.			COURS	COURSE PLAN - CAY 2018-19			E	BE-2-ME-SKIT-Ph5b1-F02-V2.2						
		Industrial	Application	is of	08							C08	ı	
		engineering materials, Joining											ı	
		Processes, power transmission											ı	
	5	Lathe, milling machine, CNC and robots			08	-	-	4	1	1	2	CO9,	L2	
												CO10	i	
	-	Total			40	4	4	4	5	5	10	-	-	

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weight-age in Marks	CO	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L2
CIA Exam – 2	30	CO5, CO6, CO7, C08	L2
CIA Exam – 3	30	CO9, CO10	L2
Assignment - 1	10	CO1, CO2, CO3, CO4	L2
Assignment - 2	10	CO5, CO6, CO7, CO8	L2
Assignment - 3	10	CO9, CO10	L2
Seminar - 1	-	CO1, CO2, CO3, CO4	L2
Seminar - 2	-	CO5, CO6,CO7,CO8	L2
Seminar - 3	-	CO9, CO10	L2
Other Activities - define -		CO1 to Co9	L2
Slip test			
Final CIA Marks	40	-	-

Note: Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN – 1

Module - 1

Title:	Sources of Energy, Basic concepts of Thermodynamics, Steam	Appr Time:	8 Hrs
a	Course Outcomes		Blooms
-	The student should be able to:	-	Level
1	Identify different sources of energy and their conversion process.	CO1	L1
2	understand thermodynamic properties	CO2	L2
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Sources of Energy: Introduction and application of energy sources like fossil fuels, hydel,	C01	L1
2	solar, wind, nuclear fuels and bio-fuels;	C01	L2
3	environmental issues like global warming and ozone depletion.	C01	L2
4	Basic concepts of Thermodynamics: Introduction, states, concept of work, heat, temperature;	CO2	L2
5	Zeroth, 1st, 2nd and 3rd laws of thermodynamics.	CO2	L2
6	Concept of internal energy, enthalpy and entropy (simple numericals).	CO2	L2
7	Steam: Formation of steam and thermodynamic properties of steam	CO2	L2
8	Properties of steam (simple numericals)	CO2	L2
С	Application Areas	СО	Level
1	Power generation in Solar, wind, hydro, nuclear, thermal power plants	CO1	L3
2	Design of Heat transfer equipment's	CO2	L3
d	Review Questions	-	-

WESTITUTE OF THE STATE OF THE S
MGALOT

MISTITUTE OF A	SKIT	Rev No.: 1.0						
Mark Karan K	Doc Code:	SKIT.Ph5b1.F02	Date:10	-01-2019				
BANGALORE	Title:	Course Plan	Page: 10 / 26					
Copyright ©2017.	Course Plan - Cay 2018-19 BE-2-ME-SKIT-Ph5t							
1	Briefly explain So	ources of Energy	CO1	L2				
2	Distinguish bet	ween Non-Renewable and Renewable energy resources.	CO1	L2				
3	Define: i) Wet	Steam; ii) Enthalpy of wet steam; iii) Dryness fraction.	CO2	L2				
	Explain the for sketches.	ormation of steam at constant pressure with suitable	CO2	L2				
	Define fuel, calorific value. Describe two types of the calorific values CO1 L2 of fuel.							
6	Explain global	warming	CO1	L2				
7	Explain ozone	depletion	CO1	L2				
8	Explain the terms	thermodynamic states, concept of work, heat, temperature	CO2	L2				
9	Define Zeroth,	law of thermodynamics.	CO2	L2				
10	Define 1st law	of thermodynamics.	CO2	L2				
11	Define 2nd law	of thermodynamics.	CO2	L2				
12	Define 3rd law	s of thermodynamics.	CO2	L2				
e	Experiences		-	-				

Module - 2

Title:	Boilers, Turbines and Hydraulic Pumps	Appr	08 Hrs
	Course Outcomes	Time:	Blooms
a	The student should be able to:	-	Level
- 1	students will be able to understand boiler mountings and accessories	-	Level L2
2	students will be able to Explain the working principle of hydraulic turbines, pumps		L2 L2
	students will be uble to Explain the working principle of flydraune turbines, pumps		LZ
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Boilers: Introduction to boilers, classification,	CO3	L2
2	Lancashire boiler, Babcock and Wilcox boiler.	CO3	L2
3	Introduction to boiler mountings and accessories (no sketches).	CO3	L2
4	Turbines: Hydraulic Turbines – Classification and specification, Principles and operation of Pelton wheel turbine,	CO4	L2
5	Francis turbine and Kaplan turbine (elementary treatment only).	CO4	L2
6	Hydraulic Pumps: Introduction, classification and specification of pumps,	CO4	L2
7	Reciprocating pump and centrifugal pump,	CO4	L2
8	concept of cavitation and priming.	CO4	L2
c	Application Areas	CO	Level
1	Thermal power plants, food processing industry, sugar plants, Textiles	CO3	L3
2	Hydro power plants	CO4	L3
d	Review Questions	-	-
1	Write the detailed classification of boilers	CO3	L2
2	Briefly explain the construction & working of Lancashire Boiler	CO3	L2
3	Explain the working of Babcock and Wilcox Boiler	CO3	L2
4	Write a brief note on boiler mountings and accessories	CO3	L2
5	List the detailed classification of hydraulic turbines	CO4	L2
6	Write a note on specification of hydraulic turbines	CO4	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 11 / 26

Copyright ©2017	cAAS. All rights reserved. COURSE PLAN - CAY 2018-19 BE-2-ME-SKIT-Ph5t	1-F02-V2.2	
7	Explain working principle of impulse and reaction turbine.	CO4	L2
8	Explain the working principle of a Pelton Turbine.	CO4	L2
9	Explain briefly with a sketch the working of a Francis Turbine.	CO4	L2
10	Explain the working of a Kaplan Turbine.	CO4	L2
11	List the detailed classification of pumps	CO4	L2
12	Write a note on specification of pumps	CO4	L2
13	Explain the working principle of Reciprocating pump	CO4	L2
14	Explain briefly the working of centrifugal pump	CO4	L2
15	Explain the concept of cavitation and priming.	CO4	L2
	T		
e	Experiences	-	-
1			

E1. CIA EXAM – 1

a. Model Question Paper – 1

C Co	de:	18ME25	Sem:	II	Marks:	50	Time:	75 minutes	ninutes		
Cour	se:	ELEMENT	S OF ME	CHANICAL E	NGINEERING	·					
-	-	Note: Ansv	ver any 2	full questions	, each carry eq	ual marks	•	CO	Level	Marks	
1	a	Explain Vap	Explain Vapour compression refrigerator with a neat sketch.							6	
	b	Explain 4-s	Explain 4-stroke petrol engine with neat sketch and pv diagram.						L2	7	
	c	Define i)To	OR ii)CO	P				5	L2	2	
					OR						
2	a	Explain Air	Explain Air conditioning with a neat sketch.						L2	7	
	b	Explain 2-s	Explain 2-stroke petrol engine with a neat sketch.					6	L2	6	
	С	length 120 diagram is	Four stroke IC engine running at 450 rpm has a bore dia of 100 mm and strok length 120 mm. The indicator diagram details are area is 4cm ² length of indicate diagram is 6.5cm and spring valve of spring used is 10 bar/cm calculate indicate power of the engine.					tor	L2	2	
		1	<u> </u>								
3	a	Explain any	three lath	e operations w	vith neat sketche	es.		9	L2	6	
	b	Explain ope	en loop and	d closed loop o	of CNC machine	es.		10	L2	5	
	c	With a neat	sketch exp	olain cylindric	al configuration	robot.		10	L2	4	
					OR						
4	a	Explain any	three mil	ling operations	s with neat sketo	ches.		9	L2	6	
	b	Explain tap	er turning	by swiveling o	of compound res	st method.		9	L2	5	
	c	With a neat	sketch exp	olain joint arm	ed configuration	n robot.		10	L2	4	

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

					Model Assignme	ent Question	S				
C Cod	e:	18ME25	Sem:	II	Marks:	10 / 10	r 0	Time:	90 – 120 n	ninutes	
Course: ELEMENTS OF MECHANICAL ENGINEERING											
Note:	Each s	student to a	answer 2-3 assi	gnments	s. Each assignme	nt carries ec	qual ma	ark.			
SNo	1	USN			Assignment De	escription			Marks	CO	Level
1	1KT	T18IS001	Write a note o	n Energy	y sources				10	CO1	L2
2	1KT	T18IS002	Differentiate	e betv	veen Non-Re	enewable	and	Renewab	le 10	CO1	L2
			energy reso	irces.							
3	1KT	T18IS003	Explain Wit	h a nea	t sketch Hyd	ro-electric	pow	er plant.	10	CO1	L2
					Ž		1	1			
4	1KT	T18IS004	Explain the	follow	ring terms : i)	Wet Stear	n; ii)	Enthalpy of	of 10	CO2	L2
			-		ness fraction.		. ,	1.0			
5	1KT	T18IS005		•	tion of steam	at consta	ant pi	ressure wit	th 10	CO2	L2

ME-18ME25 Prepared by Page # 11 / 26 Checked by Copyright ©2017. cAAS. All rights Approved by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 12 / 26

BE-2-ME-SKIT-Ph5b1-F02-V2.2 COURSE PLAN - CAY 2018-19 Copyright ©2017. cAAS. All rights reserved. suitable sketches. 1KT18IS006 Define fuel, calorific value. Describe two types of the CO1 L2 6 calorific values of fuel. 1KT18IS007 10 CO1 L2 Explain briefly flat plate solar collectors and solar pond with neat sketches 8 1KT18IS008 10 CO1 L2 Explain global warming 9 1KT18IS009 L2 Explain ozone depletion 10 CO1 1KT18IS010 10 Write a note on following terms thermodynamic states, concept of 10 L2 CO₂ work, heat, temperature 1KT18IS011 11 State and explain Zeroth, law of thermodynamics. 10 CO2 L2 1KT18IS012 10 CO2 L2 12 State and explain 1st law of thermodynamics. 1KT18IS013 13 10 CO₂ L2 State and explain 2nd law of thermodynamics. 14 1KT18IS014 10 CO₂ L2 State and explain 3rd laws of thermodynamics. 15 1KT18IS015 10 CO3 L2 Write the detailed classification of boilers 1KT18IS016 10 L2 16 CO3 Briefly explain the construction & working of Lancashire Boiler with a neat sketch 17 1KT18IS017 Sketch and explain the working of Babcock and Wilcox 10 CO3 L2 Boiler 18 1KT18IS018 10 CO3 L2 Explain boiler mountings and accessories 1KT18CV013 CO4 L2 19 10 Write the detailed classification of hydraulic turbines 20 1KT18CV017 Write a note on specification of hydraulic turbines 10 CO4 L2 1KT18CV018 21 Explain working principle of impulse and reaction turbine 10 CO4 L2 sketches. 22 1KT18CV019 L2 With a neat sketch explain the working principle of a 10 CO₄ Pelton Turbine. 23 1KT18CV021 10 L2 Explain briefly with a sketch the working of a Francis CO4 Turbine. 24 1KT18CV022 10 CO4 L2 With a schematic diagram explain the working of a Kaplan Turbine. 1KT18CV026 25 10 CO4 L2 List the detailed classification of pumps 1KT18CV028 Write a note on specification of pumps 10 CO4 L2 26 1KT18CV030 27 With a neat sketch explain the working principle of 10 CO4 L2 Reciprocating pump 28 1KT18CV032 Explain briefly with a sketch the working of centrifugal 10 CO4 L2 pump

D2. TEACHING PLAN - 2

Module – 3

Title:	Internal Combustion Engines, Refrigeration and Air conditioning	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	students will be able to Explain the working principle of IC engines	CO5	L2
2	students will be able to Explain the working principle of refrigeration.	CO6	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Internal Combustion Engines-Classification, I.C. Engines parts,	CO5	L2
2	2 and 4 stroke petrol and 4-stroke diesel engines.	CO5	L2
3	P-V diagrams of Otto and Diesel cycles.	CO5	L2
4	Simple problems on indicated power, brake power, indicated thermal efficiency,	CO5	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 13 / 26

oyright ©201	7. cAAS. All rights reserved. COURSE PLAN - CAY 2018-19 BE-2-ME-SKIT-Ph5b1	-F02-V2.2	
	brake thermal efficiency, mechanical efficiency and specific fuel consumption.		
5	Refrigeration - Definitions - Refrigerating effect, Ton of Refrigeration, Ice making capacity,	CO6	L2
6	COP, relative COP, Unit of Refrigeration. Refrigerants, Properties of refrigerants, List of commonly used refrigerants.	CO6	L2
7	Principle and working of vapor compression refrigeration and vapor absorption refrigeration. Domestic refrigerator.	CO6	L2
8	Principles and applications of air conditioners, window and split air conditioners.	CO6	L2
c	Application Areas	СО	Level
1	Aerospace and Automotive industries	CO5	L3
2	Fridges for domestic and household purposes, air-conditioners for rooms	CO6	L3
d	Review Questions	-	-
1	Explain Parts of Internal Combustion Engine	CO5	L2
2	Explain the working of a four stroke petrol and diesel engine.	CO5	L2
3	Explain the working of a four stroke diesel engine.	CO5	L2
4	Explain the working of a two stroke petrol engine.	CO5	L2
5	Distinguish between two stroke and four stroke I.C. Engine.	CO5	L2
6	Write the differences between petrol engine and diesel engine.	CO5	L2
7	Define the following terms-indicated power, brake power,indicated thermal efficiency.	CO5	L2
8	Define the following terms-brake thermal efficiency, mechanical efficiency and specific fuel consumption.	CO5	L2
9	Explain the parts of refrigerator.	CO6	L2
10	Define: a. Refrigeration b. Refrigeration Effect	CO6	L2
11	Explain working of vapour absorption refrigeration.	CO6	L2
12	Define: a. Ton of Refrigeration b. Ice making capacity	CO6	L2
13	Define: a. Co-efficient of performance	CO6	L2
	b. Relative Co-efficient of performance		
14	Explain working of vapour compression refrigeration.	CO6	L2
15	What are the properties of good refrigerant?	CO6	L2
16	List different types of refrigerants.	CO6	L2
e	Experiences	-	-
1		-	1

Module - 4

			,
Title:	Engineering materials, Joining Processes, Belt drives, Gear drives	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	students will be able to Understand the properties of common engineering materials	CO7	L2
	and their applications in engineering industry.		
2	students will be able to Recognize various power transmission elements.	CO8	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Metals - Ferrous: cast iron, tool steels and stainless steels and nonferrous:	CO7	L2
	aluminum, brass, bronze. Polymers - Thermoplastics and thermosetting polymers.		
	Ceramics - Glass, optical fiber glass, cermets.		

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 14 / 26

Copyright ©2017.	cAAS. All rights reserved. COURSE PLAN - CAY 2018-19 BE-2-ME-SKIT-Ph5b1	-F02-V2.2	
2	Composites - Fiber reinforced composites, Metal Matrix Composites	CO7	L2
	Smart materials – Piezoelectric materials, shape memory alloys, semiconductors and		
	insulators.		
3	Definitions. Classification and methods of soldering, brazing and welding.	CO7	L2
4	Brief description of arc welding, oxy-acetylene welding, TIG welding, and MIG	CO7	L2
	welding.		
5	Belt drives Open & crossed belt drives, Definitions -slip, creep, velocity ratio,	CO8	L2
	derivations for length of belt in open and crossed belt drive, ratio of tension in flat		
	belt drives,		
6	advantages and disadvantages of V belts and timing belts, simple numerical	CO8	L2
	problems.		
7	Types–spur, helical, bevel, worm and rack and pinion. Velocity ratio, advantages and	CO8	L2
	disadvantages over belt drives,		
8	simple numerical problems on velocity ratio.	CO8	L2
С	Application Areas	CO	Level
1	Design and fabrication of various machine components in Aerospace and	CO7	L2
_	Automotive industries?		
2	Power transmission in vehicles, power transmission between machine components	CO8	L2
d	Review Questions	_	
1	Define a composite material. How are composite materials classified?	CO7	L2
	Give example for each.		
2	1	CO7	1.0
2	Write the applications of Composite Materials.	CO7	L2
3	What are the key applications of composite materials in Aerospace	CO7	L2
	and Automotive industries?	207	22
4		CO7	1.0
4	State the composition and application of any four ferrous metals.	CO7	L2
5	Briefly explain the types and applications of Non-ferrous alloys.	CO7	L2
6	State the composition, properties and applications of high carbon	CO7	L2
	steels.		
7	Write a note on Ferrous Alloys.	CO7	L2
8	Write a note on Non-Ferrous Alloys	CO7	L2
9	Define the following terms -slip, creep, velocity ratio, ratio of tension in flat belt	CO8	L2
	drives		
10	Derive the relation for length of belt in open and crossed belt drive,	CO8	L2
11	Write the advantages and disadvantages of V belts and timing belts	CO8	L2
12	Write the advantages and disadvantages of gear drives over belt drives	CO8	L2
e	Experiences	-	-
1		CO7	L2

E2. CIA EXAM – 2

a. Model Question Paper - 2

-					ch carry equal			Marks	CO	Level
Cor	ourse: ELEMENTS OF MECHANICAL ENGINEERING									
CC	ode:	18ME25	Sem:	II	Marks:	30	Time:	75 minutes		

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 15 / 26

Copyrig	ht ©201	7. cAAS. All rights reserved. COURSE PLAN - CAY 2018-19 BE-2-ME-SKIT-Ph5b	1-F02-V	2.2	
1	a	Explain with a neat sketch Parts of Internal Combustion Engine	20	CO5	L2
	b	Explain the parts of refrigerator.		CO6	L2
	c	Define a composite material. How are composite materials classified?		CO7	L2
		Give example for each.			
	d	Briefly describe arc welding,		CO8	L2
2	a	With the help of PV diagram explain the working of a four stroke petrol and diesel engine.	20	CO5	L2
	b	Define: a. Refrigeration b. Refrigeration Effect		CO6	L2
	С	Write the applications of Composite Materials.		CO7	L2
	d	Describe oxy-acetylene welding with a neat sketch,		CO8	L2
3	a	With the help of PV diagram explain the working of a four stroke diesel engine.	20	CO5	L2
	b	Explain with neat sketch vapour absorption refrigeration.		CO6	L2
	С	State the composition, properties and applications of high carbon steels.		CO7	L2
	d	Derive the relation for length of belt in open and crossed belt drive,		CO8	L2
4	a	With a neat sketch explain the working of a two stroke petrol engine.	20	CO5	L2
	b	Define: a. Ton of Refrigeration b. Ice making capacity		CO6	L2
	с	Write a note on Ferrous Alloys.		CO7	L2
	d	Write the advantages and disadvantages of V belts and timing belts		CO8	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Mode	l Assignment Que	estions				
Crs Co	ode:	18ME25	Sem:	II	Marks:	10/10	Time:	90 – 120 n	ninutes	
Course	e:	ELEMEN	TS OF MECHA	ANICAL EN	GINEERING					
Note:	Each s	student to a	answer 2-3 assig	gnments. Eac	h assignment carr	ies equal 1	mark.			
SNo	•	USN		Assi	ignment Descripti	on		Marks	CO	Level
1	1KT	T18IS001	Explain with	n a neat sl	ketch Parts of	Internal	l Combustic	n 10	CO5	L2
			Engine							
2	1KT	T18IS002	Explain the	working of	a four stroke	petrol er	gine with th	ne 10	CO5	L2
			help of PV d	iagram.	•	-				
3	1KT	T18IS003	With the hel	p of PV di	agram explain	the worl	king of a for	ur 10	CO5	L2
			stroke diesel	engine.			-			
4	1KT	T18IS004	With a neat	sketch ex	plain the wor	king of	a two strol	ke 10	CO5	L2
			petrol engine	e.						
5	1KT	T18IS005	Distinguish	between	two stroke a	nd four	stroke I.	C. 10	CO5	L2
			Engine.							
6	1KT	T18IS006	Write the d	ifferences	between petro	ol engin	e and dies	el 10	CO5	L2
			engine.		-					
7	1K7	T18IS007	Define the fol	lowing term	s-indicated power	r, brake p	ower, indicate	ed 10	CO5	L2
			thermal efficier	ncy.						
8	1KT	T18IS008	Define the fo	ollowing ter	ms-brake therma	l efficier	ncy, mechanic	al 10	CO5	L2

ME-18ME25 Prepared by Page # 15 / 26 Checked by Copyright ©2017. cAAS. All rights
Approved by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 16 / 26

BE-2-ME-SKIT-Ph5b1-F02-V2.2 COURSE PLAN - CAY 2018-19 Copyright ©2017. cAAS. All rights reserved. efficiency and specific fuel consumption. 1KT18IS009 10 CO6 L2 9 Explain the parts of refrigerator. 1KT18IS010 10 Define: a. Refrigeration b. Refrigeration Effect 10 CO6 L2 11 1KT18IS011 10 CO6 L2 Explain with neat sketch vapour absorption refrigeration. 12 1KT18IS012 10 CO6 L2 Define: a. Ton of Refrigeration b. Ice making capacity 13 1KT18IS013 Define: a. Co-efficient of performance 10 CO6 L2 b. Relative Co-efficient of performance 1KT18IS014 14 10 CO6 L2 Explain with neat sketch vapour compression refrigeration. 1KT18IS015 15 10 CO6 L2 What are the properties of good refrigerant? 16 1KT18IS016 10 CO6 L2 List different types of refrigerants. 1KT18IS017 17 Define a composite material. How are composite materials 10 CO7 L2 classified? Give example for each. 1KT18IS018 18 10 CO7 L2 Write the applications of Composite Materials. 1KT18CV013 19 10 CO7 L2 What are the key applications of composite materials in Aerospace and Automotive industries? 20 1KT18CV017 10 State the composition and application of any four ferrous CO7 L2 metals. 1KT18CV018 10 CO7 L2 21 Briefly explain the types and applications of Non-ferrous alloys. 22 1KT18CV019 State the composition, properties and applications of high 10 CO7 L2 carbon steels. 23 1KT18CV021 10 CO7 L2 Write a note on Ferrous Alloys. 1KT18CV022 24 10 CO7 L2 Write a note on Non-Ferrous Alloys 25 1KT18CV026 Briefly describe arc welding, 10 CO8 L2 1KT18CV028 Describe oxyacetylene welding with a neat sketch, 26 CO8 L2 10 1KT18CV030 27 Explain with sketch TIG welding, 10 CO8 L2 28 1KT18CV032 Briefly describe MIG welding. 10 CO8 L2 29 1KT18IS001 Define the following terms -slip, creep, velocity ratio, ratio of tension CO8 L2 in flat belt drives 30 1KT18IS002 Derive the relation for length of belt in open and crossed belt drive, 10 CO8 L2 1KT18IS003 Write the advantages and disadvantages of V belts and timing belts CO8 L2 31 10 1KT18IS004 Write the advantages and disadvantages of gear drives over belt drives 10 CO8 L2 32

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 17 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

D3. TEACHING PLAN - 3

Module – 5

Title:	Lathe, Milling machine, CNC and Robots	Appr Time:	08 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	students will be able to Discuss the working of conventional machine tools,	CO9	L2
	machining processes, tools and accessories.		
2	students will be able to Describe the advanced manufacturing systems.	CO10	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Lathe - Principle of working of a center lathe. Parts of a lathe. Operations on lathe -	C09	L2
	Turning, Facing, Knurling, Thread Cutting, Drilling,	G 00	* 0
2	Taper turning by Tailstock offset method and Compound slide swiveling method,	C09	L2
3	Specification of Lathe.	C00	1.0
3	Milling Machine - Principle of milling, types of milling machines. Working of	C09	L2
4	horizontal and vertical milling machines. Milling processes - plane milling, end milling, slot milling, angular milling, form	C09	L2
4	milling, straddle milling, and gang milling.	CUS	L2
5	Computer Numerical Control (CNC): Introduction, components of CNC,	CO10	L2
6	open loop and closed loop systems, advantages of CNC, CNC Machining centers and	CO10	L2
0	Turning centers.	0010	112
7	Robots: Robot anatomy, joints and links, common robot configurations.	CO10	L2
8	Applications of Robots in material handling, processing and assembly and inspection	CO10	L2
С	Application Areas	CO	Level
1	Used in manufacturing cylindrical jobs, flat sufaces of machine components	CO9	L2
2	Automation in industries	CO10	L2
d	Review Questions	=.	-
1	Write the Specification of Lathe.	CO9	L2
2	Explain the Principle of working of a center lathe.	CO9	L2
3	Explain the following Operations on lathe - Turning, Facing, Knurling, Thread	CO9	L2
	Cutting, Drilling,		
4	Explain with a sketch Taper turning by Tail-stock offset method	CO9	L2
5	Explain with a sketch Taper turning by Compound slide swiveling method,	CO9	L2
6	Illustrate with sketch Principle of milling,	CO9	L2
7	Explain with sketches the following Milling processes - plane milling, end milling,	CO9	L2
0	slot milling, angular milling, form milling, straddle milling, and gang milling.	COO	1.2
8 9	Sketch and explain the Working of horizontal milling machine.	CO9	L2 L2
10	Sketch and explain the Working of vertical milling machine. Define Automation? Explain briefly different types of Automation	CO10	L2 L2
	Define Automation? Explain briefly different types of Automation		
11	Explain briefly NC and CNC Machines with the help of flow diagram.	CO10	L2
12	Define Dehet? Evaleia with a next detail different of C	CO10	L2
12	Define Robot? Explain with a neat sketch different configuration	COIU	L2
	system of robots.		
13	Write the Advantages and Disadvantages of NC and CNC Machines.	CO10	L2
14	Categorize the applications of Robots in material handling, processing and assembly	CO10	L2
	and inspection.		
e	Experiences	-	-
1			

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 18 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	ode:	18ME25	Sem:	II	Marks:	30	Time:	75 minutes		
Cours	se:	ELEMENT	S OF MEC	CHANICAL E	ENGINEERING	r				
-	-	Note: Answ	er any 2 qu	iestions, each	carry equal ma	rks.		Marks	CO	Level
1	a	Explain the	following	g Operations	on lathe - Tu	rning, Faci	ng, Knurling, The	read 20	CO9	L2
		Cutting, Dri	illing,							
	b	Define Au	ıtomatioı	n? Explain	briefly differe	ent types o	of Automation		CO10	L2
2	a				g Milling proce nilling, straddle		e milling, end mill d gang milling.	ing, 20	CO9	L2
	b	Explain b	Explain briefly NC and CNC Machines with the help of flow diagram				am.	CO10	L2	
3	a	Evnlain wit	h a sketch	Taner turning	by Compound	clide cwivel	ling method	20	CO9	L2
3	b	-	obot? E		<u> </u>		rent configurat		CO10	L2 L2
4	a	Sketch and	explain the	Working of	vertical milling	machine.		20	CO9	L2
	b	Categorize and inspecti		tions of Robo	ots in material h	andling, pro	ocessing and assen	nbly	CO10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

		Model Assignment Questi	ions			
Crs Co	de: 18M	25 Sem: II Marks: 10	/ 10 Time:	90 - 120 r	ninutes	
Course		ENTS OF MECHANICAL ENGINEERING				
		to answer 2-3 assignments. Each assignment carries	s equal mark.			
SNo	USN	Assignment Description		Marks	CO	Level
1	1KT18IS00	Write the Specification of Lathe.		10	CO9	L2
2	1KT18IS00	Explain the Principle of working of a center lathe.		10	CO9	L2
3		Explain the following Operations on lathe - Turn Thread Cutting, Drilling,		g, 10	CO9	L2
4	1KT18IS00	Explain with a sketch Taper turning by Tail-stock of	offset method	10	CO9	L2
5	1KT18IS00	method,	oound slide swiveling	ng 10	CO9	L2
6		Illustrate with sketch Principle of milling,		10	CO9	L2
7	1KT18IS00	Explain with sketches the following Milling pro-			CO9	L2
		end milling, slot milling, angular milling, form mand gang milling.		g,		
8		Sketch and explain the Working of horizontal milli		10	CO9	L2
9		Sketch and explain the Working of vertical milling	machine.	10	CO9	L2
10	1KT18IS01	Define Automation? Explain briefly of Automation	different types of	of 10	CO10	L2
11	1KT18IS01	Explain briefly NC and CNC Machines w diagram.	ith the help of flo	w 10	CO10	L2
12	1KT18IS01	Define Robot? Explain with a neat configuration system of robots.	sketch differen	nt 10	CO10	L2
13	1KT18IS01	Write the Advantages and Disadvantages Machines.	s of NC and CN	C 10	CO10	L2
14		Categorize the applications of Robots in materia and assembly and inspection.	l handling, procession		CO10	L2
15		Write the Specification of Lathe.		10	CO9	L2
16	1KT18IS01	Explain the Principle of working of a center lathe.		10	CO9	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 19 / 26

Copyrigh	nt ©2017. cAAS. All righ	nts reserved. COURSE PLAN - CAY 2018-19 BE-2-ME-SKIT-Pl	n5b1-F02-V	72.2	
17	1KT18IS017	Explain the following Operations on lathe - Turning, Facing, Knurling,	10	CO9	L2
		Thread Cutting, Drilling,			
18	1KT18IS018	Explain with a sketch Taper turning by Tail-stock offset method	10	CO9	L2
19	1KT18CV013	Explain with a sketch Taper turning by Compound slide swiveling	10	CO9	L2
		method,			
20	1KT18CV017	Illustrate with sketch Principle of milling,	10	CO9	L2
21	1KT18CV018	Explain with sketches the following Milling processes - plane milling,	10	CO9	L2
		end milling, slot milling, angular milling, form milling, straddle milling,			
		and gang milling.			
22	1KT18CV019	Sketch and explain the Working of horizontal milling machine.	10	CO9	L2
23	1KT18CV021	Sketch and explain the Working of vertical milling machine.	10	CO9	L2
24	1KT18CV022	Define Automation? Explain briefly different types of	10	CO10	L2
		Automation			
25	1KT18CV026	Explain briefly NC and CNC Machines with the help of flow	10	CO10	L2
		diagram.			
26	1KT18CV028	Define Robot? Explain with a neat sketch different	10	CO10	L2
		configuration system of robots.			
27	1KT18CV030	Write the Advantages and Disadvantages of NC and CNC	10	CO10	L2
		Machines.			
28	1KT18CV032	Categorize the applications of Robots in material handling, processing	10	CO10	L2
		and assembly and inspection.		2010	

F. EXAM PREPARATION

1. University Model Question Paper

Cour	Course: ELEMENTS OF MECHANICAL ENGINEERING Month / Y				
Crs C	Code:	18ME25 Sem: II Marks: 100 Time:		180 mii	nutes
-	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	CO	Level
1		Distinguish between Non-Renewable and Renewable energy	20	CO1	L2
		resources.		G0.2	
	b	Define: i) Wet Steam; ii) Enthalpy of wet steam; iii) Dryness fraction.		CO2	L2
	c	Explain global warming		CO1	L2
	d	Write a note on following terms thermodynamic states, concept of work, heat, temperature		CO2	L2
		OR			
-	a	With a neat sketch briefly explain the Hydro-electric power plant.	20	CO1	L2
		Explain the formation of steam at constant pressure with suitable sketches.			L2
	c	Explain ozone depletion		CO1	L2
	d	Define laws of thermodynamics.		CO2	L2
2	a	Write a brief note on boiler mountings and accessories	20	CO3	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 20 / 26

COURSE PLAN - CAY 2018-19 BE-2-ME-SKIT-Ph5b1-F02-V2.2 Copyright ©2017. cAAS. All rights reserved. CO4 L2 Explain briefly with a sketch the working of centrifugal pump With a neat sketch explain the working of Babcock and Wilcox Boiler CO3 L2 CO4 With a neat sketch explain the working principle of Reciprocating L2 OR 20 Write the detailed classification of boilers CO3 L2 With a neat sketch explain the working principle of a Pelton Turbine. CO4 L2 b Briefly explain the construction & working of Lancashire Boiler with CO3 L2 a neat sketch Explain briefly with a sketch the working of a Francis Turbine. CO4 L2 CO5 L2 3 Explain with a neat sketch Parts of Internal Combustion Engine CO6 L2 b Explain the parts of refrigerator. CO5 L2. With the help of PV diagram explain the working of a four stroke diesel engine. CO6 L2 d Explain with neat sketch vapour absorption refrigeration. 20 CO5 L2. With the help of PV diagram explain the working of a four stroke petrol and diesel engine. CO6 L2 Define: a. Refrigeration b. Refrigeration Effect With a neat sketch explain the working of a two stroke petrol engine. CO₅ L2 CO6 L2 Define: a. Ton of Refrigeration b. Ice making capacity Write a note on Ferrous Alloys. CO7 L2 Write the advantages and disadvantages of V belts and timing belts CO8 L2 b L2 CO7 State the composition, properties and applications of high carbon Derive the relation for length of belt in open and crossed belt drive. CO8 L2 L2 CO7 Define a composite material. How are composite materials classified? Give example for each. Briefly describe arc welding, b CO8 L2 CO7 L2 Write the applications of Composite Materials. L2 Describe oxy-acetylene welding with a neat sketch, CO8 Explain the following Operations on lathe - Turning, Facing, Knurling, Thread 20 CO9 L2 5 Cutting, Drilling, b Define Automation? Explain briefly different types of Automation CO10 L2 Explain with sketches the following Milling processes - plane milling, end milling, 20 CO9 L2 slot milling, angular milling, form milling, straddle milling, and gang milling. CO10 L2 Explain briefly NC and CNC Machines with the help of flow diagram.

2. SEE Important Questions

Course:		ELEMENTS OF MECHANICAL ENGINEERING Mont					Month /	Year	May /2	2018
Crs Code:		18ME25	Sem:	II	Marks:	100	Time:		180 m	inutes
	Note	Answer all FIVE full questions. All questions carry equal marks.						-	-	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 21 / 26

BE-2-ME-SKIT-Ph5b1-F02-V2.2 Copyright ©2017. cAAS. All rights reserved. COURSE PLAN - CAY 2018-19 Mod Qno. Important Question Marks CO Year ule 20 CO1 2014 Explain global warming CO1 2016 Explain ozone depletion Write a note on following terms thermodynamic states, concept of work, CO2 2004 heat,temperature CO2 2007 4 Define Zeroth law of thermodynamics. CO2 2007 5 Define 1st law of thermodynamics. 2 CO3 2005 20 1 With a neat sketch explain the working of Babcock and Wilcox Boiler CO3 2015 2 Write a brief note on boiler mountings and accessories CO4 2009 3 With a neat sketch explain the working principle of a Pelton Turbine. CO4 2016 4 With a neat sketch explain the working principle of Reciprocating CO4 2008 5 Explain the concept of cavitation and priming. 20 CO5 2012 3 1 Explain with a neat sketch Parts of Internal Combustion Engine CO5 2010 2 With the help of PV diagram explain the working of a four stroke petrol and diesel engine. 3 Write the differences between petrol engine and diesel engine. CO5 2007 CO6 2004 4 Explain with neat sketch vapour compression refrigeration. 5 Explain with neat sketch vapour absorption refrigeration. CO6 2011 4 CO7 2004 20 1 State the composition, properties and applications of high carbon Describe oxy-acetylene welding with a neat sketch, 2 CO7 2004 CO8 2006 Define the following terms -slip, creep, velocity ratio, ratio of tension in flat belt drives 4 Derive the relation for length of belt in open belt drive, CO8 2004 Write the advantages and disadvantages of gear drives over belt drives CO8 2007 Explain with a sketch Taper turning by Compound slide swiveling method, CO9 2009 20 Sketch and explain the Working of vertical milling machine. CO9 2007 3 Define Automation? Explain briefly different types of Automation CO10 2016 CO10 2015 4 Explain briefly NC and CNC Machines with the help of flow diagram. CO10 2017 5 Define Robot? Explain with a neat sketch different configuration system of robots.

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 22 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Mod	Course Content or Syllabus	Conten	Blooms'	Final	Identified	Instruction
ule-	(Split module content into 2 parts which have similar	t	Learning	Blooms'	Action Verbs	Methods for
#	concepts)	Teachi	Levels for	Level	for Learning	Learning
	_	ng	Content			
		Hours				
1	Introduction and application of energy sources Fossil fuels,		Energy sources,		Writing	L2
	hydel, solar, wind, nuclear fuels and bio-fuels		Thermodynami	Talk +		Understand
	Environmental issues like global warming and ozone depletion.		c properties	PPT		
	Introduction, states, concept of work, heat, temperature;			& Video		
	Zeroth, 1st, 2nd and 3rd laws of thermodynamics Concept					
	of internal energy, enthalpy and entropy (simple					
	numerical).					
	Formation of steam and thermodynamic properties of steam Properties of steam (simple numericals).					
2	Introduction to boilers, classification, Boilers: Introduction	08	Steam	Chalk &	Writing	L2
_	to boilers, classification, Introduction to boiler mountings		generation,	Talk +	Willing	Understand
	and accessories (no sketches)		Energy	PPT		0 0
	Hydraulic Turbines – Classification specification,		conversion	& Video		
	Principles and operation of Pelton wheel turbine, Francis turbine and Kaplan turbine.					
	Classification and specification of pumps, Reciprocating					
	pump and centrifugal pump, Concept of cavitation and					
	priming.					
3	Classification, I.C. Engines parts,2 and 4 stroke petrol and	08	Combustion,	Chalk &	Writing	L2
	4-stroke diesel engines. P-V diagrams of Otto and Diesel cycles. Simple problems		refrigeration	Talk +		Understand
	on indicated power, brake power, indicated thermal			PPT		
	efficiency, brake thermal efficiency, mechanical efficiency			& Video		
	and specific fuel consumption.					
	Definitions – Refrigerating effect, Ton of Refrigeration, Ice					
	making capacity, COP, relative COP, Unit of Refrigeration Refrigerants, Properties of refrigerants, List of commonly					
	used refrigerants. Principle and working of vapor					
	compression refrigeration and vapor absorption					
	refrigeration. Domestic refrigerator. Principles and					
	applications of air conditioners, window and split air conditioners					
4	Metals – Ferrous: cast iron, tool steels and stainless steels	08	Engineering	Chalk &	Writing	L2
7	and nonferrous: aluminum, brass, bronze. Polymers –	08	materials,	Talk +	wiining	Understand
	Thermoplastics and thermo setting polymers. Ceramics -		power	PPT		Chacistana
	Glass, optical fiber glass, cermet's. Composites - Fiber		transmission	& Video		
	reinforced composites, Metal Matrix Composites Smart					
	materials – Piezoelectric materials, shape memory alloys, semiconductors and insulators.					
	Definitions. Classification and methods of soldering,					
	brazing and welding.					
	Brief description of arc welding,					
	oxyacetylene welding, TIG welding, and					
	MIG welding.					
	Open & crossed belt drives, Definitions -					
	slip, creep, velocity ratio, derivations for					
	· · · · · · · · · · · · · · · · · ·					
	length of belt in open and crossed belt drive,					
	Ratio of tension in flat belt drives,					
	advantages and					

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 23 / 26

					1 480. 20	, _ 0
1	nt ©2017. cAAS. All rights reserved. COURSE PLAN - CA	1) BE	-2-ME-SKIT	-Ph5b1-F02-V2.2	ı
	disadvantages of V belts and timing belts,					
	simple numerical problems.					
	Types-spur, helical, bevel, worm and rack					
	and pinion. Velocity ratio, Advantages and					
	disadvantages over belt drives, simple					
	numerical problems on velocity ratio.					
5	Principle of working of a center lathe. Parts of a lathe.	8	Machining	Chalk &	Writing	L2
	Operations on lathe -Turning, Facing, Knurling, Thread		process,	Talk +	Č	Understand
	Cutting, Drilling, Taper turning by Tail stock offset method		Automation	PPT		
	and Compound slide swiveling method, Specification of		rutomation	& Video		
	Lathe.			& video		
	Principle of milling, types of milling machines. Working of					
	horizontal and vertical milling machines. Milling processes					
	- plane milling, end milling, slot milling, angular milling,					
	form milling, straddle milling, and gang milling.					
	Introduction, components of CNC, open loop and closed					
	loop systems, Advantages of CNC, CNC Machining					
	centers and Turning centers.					
	Robot anatomy, joints and links, common robot					
	configurations. Applications of Robots in material					
	handling, processing and assembly and inspection.					

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 24 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 25 / 26

COURSE PLAN - CAY 2018-19

BE-2-ME-SKIT-Ph5b1-F02-V2.2

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example

N/L 1	Course Contant	Tac -1	Dofine 4	Course Outcome Course	Dloome?
Mod			Refined		Blooms'
ule-	(Split into 2 parts for each Module)	Hours	Concept		Level
#			_	Condition/methodology, Bench mark	
1	Introduction and application of energy sources Fossil fuels, hydel, solar, wind, nuclear fuels and bio-fuels Environmental issues like global warming and ozone depletion.			The sources of Energy like renewable and nonrenewable.	L2 Understand
1	Introduction, states, concept of work, heat, temperature; Zeroth, 1st, 2nd and 3rd laws of thermodynamics Concept of internal energy, enthalpy and entropy (simple numerical). Formation of steam and thermodynamic properties of steam Properties of steam (simple numericals).		Propert ies of thermo dynami cs	Laws of thermodynamic and formation of steam.	L2 Understand
2	Introduction to boilers, classification, Boilers: Introduction to boilers, classification, Introduction to boiler mountings and accessories (no sketches) Hydraulic Turbines – Classification specification, Principles and operation of Pelton wheel turbine, Francis turbine and Kaplan turbine.			Working and construction of boiler for formation of steam.	L2 Understand
2	Classification and specification of pumps, Reciprocating pump and centrifugal pump, Concept of cavitation and priming.	04	conversio n		L2 Understand
3	Classification, I.C. Engines parts,2 and 4 stroke petrol and 4-stroke diesel engines. P-V diagrams of Otto and Diesel cycles. Simple problems on indicated power, brake power, indicated thermal efficiency, brake thermal efficiency, mechanical efficiency and specific fuel consumption.	04	Combusti on	Classification of I.C. Engines parts,2 and 4 stroke petrol and 4-stroke diesel engines working.	L2 Understand
3	Definitions – Refrigerating effect, Ton of Refrigeration, Ice making capacity, COP, relative COP, Unit of Refrigeration Refrigerants, Properties of refrigerants, List of commonly used refrigerants. Principle and working of vapor compression refrigeration and vapor absorption refrigeration. Domestic refrigerator. Principles and applications of air conditioners, window and split air conditioners		Refrige ration and Air conditi oning	working of vapor compression refrigeration and vapor absorption refrigeration.	L2 Understand
4	Metals – Ferrous: cast iron, tool steels and stainless steels and nonferrous: aluminum, brass, bronze. Polymers – Thermoplastics and thermo setting polymers. Ceramics - Glass, optical fiber glass, cermet's. Composites – Fiber reinforced composites, Metal Matrix Composites Smart materials – Piezoelectric materials, shape memory alloys, semiconductors and insulators.		Engineeri ng materials and Joining processes		L2 Understand

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:10-01-2019
Title:	Course Plan	Page: 26 / 26

	Title. Course Fiall			rage. 20 / 20	
Copyrig	ht ©2017. cAAS. All rights reserved. COURSE PL	AN - C	AY 2018-19	BE-2-ME-SKIT-Ph5b1-F02-V2.2	
	Definitions. Classification and methods of				
	soldering, brazing and welding.				
	Brief description of arc welding,				
	oxyacetylene welding, TIG welding, and				
	MIG welding.				
4	Open & crossed belt drives, Definitions -	04	power	Definitions -slip, creep, velocity ratio,	L2
	slip, creep, velocity ratio, derivations for		transmiss	derivations for length of belt in open and	Understand
	length of belt in open and crossed belt		ion	crossed belt drive, Ratio of tension in flat	
	drive, Ratio of tension in flat belt drives,			belt drives, advantages and disadvantages	
	advantages and disadvantages of V belts			of V belts and timing belts	
	and timing belts, simple numerical				
	problems.				
	Types-spur, helical, bevel, worm and rack				
	and pinion. Velocity ratio, Advantages and				
	disadvantages over belt drives, simple				
	numerical problems on velocity ratio.				
5	Principle of working of a center lathe. Parts	04	Machinin	Machining processes like Turning,	L2
	of a lathe. Operations on lathe -Turning,		g	Facing, Knurling, Thread Cutting,	Understand
	Facing, Knurling, Thread Cutting, Drilling,		operation	Drilling, Taper turning by Tail stock	
	Taper turning by Tail stock offset method		S	offset method	
	and Compound slide swiveling method,				
	Specification of Lathe.				
	Principle of milling, types of milling				
	machines. Working of horizontal and				
	vertical milling machines. Milling				
	processes - plane milling, end milling, slot				
	milling, angular milling, form milling,				
	straddle milling, and gang milling.				
5	Introduction, components of CNC, open	04	Automati	Components of CNC, open loop and	L2
	loop and closed loop systems, Advantages		on	closed loop systems. Applications of	Understand
	of CNC, CNC Machining centers and			Robots in material handling, processing	
	Turning centers.			and assembly and inspection.	
	Robot anatomy, joints and links, common				
	robot configurations. Applications of				
	Robots in material handling, processing and				
	assembly and inspection.				